98 research outputs found

    Bridging the Gap between Programming Languages and Hardware Weak Memory Models

    Full text link
    We develop a new intermediate weak memory model, IMM, as a way of modularizing the proofs of correctness of compilation from concurrent programming languages with weak memory consistency semantics to mainstream multi-core architectures, such as POWER and ARM. We use IMM to prove the correctness of compilation from the promising semantics of Kang et al. to POWER (thereby correcting and improving their result) and ARMv7, as well as to the recently revised ARMv8 model. Our results are mechanized in Coq, and to the best of our knowledge, these are the first machine-verified compilation correctness results for models that are weaker than x86-TSO

    Acute: high-level programming language design for distributed computation

    No full text
    Existing languages provide good support for typeful programming of standalone programs. In a distributed system, however, there may be interaction between multiple instances of many distinct programs, sharing some (but not necessarily all) of their module structure, and with some instances rebuilt with new versions of certain modules as time goes on. In this paper we discuss programming language support for such systems, focussing on their typing and naming issues. We describe an experimental language, Acute, which extends an ML core to support distributed development, deployment, and execution, allowing type-safe interaction between separately-built programs. The main features are: (1) type-safe marshalling of arbitrary values; (2) type names that are generated (freshly and by hashing) to ensure that type equality tests suffice to protect the invariants of abstract types, across the entire distributed system; (3) expression-level names generated to ensure that name equality tests suffice for type-safety of associated values, e.g. values carried on named channels; (4) controlled dynamic rebinding of marshalled values to local resources; and (5) thunkification of threads and mutexes to support computation mobility. These features are a large part of what is needed for typeful distributed programming. They are a relatively lightweight extension of ML, should be efficiently implementable, and are expressive enough to enable a wide variety of distributed infrastructure layers to be written as simple library code above the byte-string network and persistent store APIs. This disentangles the language runtime from communication intricacies. This paper highlights the main design choices in Acute. It is supported by a full language definition (of typing, compilation, and operational semantics), by a prototype implementation, and by example distribution libraries

    Reconciling Event Structures with Modern Multiprocessors

    Get PDF
    Weakestmo is a recently proposed memory consistency model that uses event structures to resolve the infamous "out-of-thin-air" problem and to enable efficient compilation to hardware. Nevertheless, this latter property - compilation correctness - has not yet been formally established. This paper closes this gap by establishing correctness of the intended compilation schemes from Weakestmo to a wide range of formal hardware memory models (x86, POWER, ARMv7, ARMv8) in the Coq proof assistant. Our proof is the first that establishes correctness of compilation of an event-structure-based model that forbids "out-of-thin-air" behaviors, as well as the first mechanized compilation proof of a weak memory model supporting sequentially consistent accesses to such a range of hardware platforms. Our compilation proof goes via the recent Intermediate Memory Model (IMM), which we suitably extend with sequentially consistent accesses

    A Separation Logic for a Promising Semantics

    Get PDF
    We present SLR, the first expressive program logic for reason- ing about concurrent programs under a weak memory model addressing the out-of-thin-air problem. Our logic includes the standard features from existing logics, such as RSL and GPS, that were previously known to be sound only under stronger memory models: (1) separation, (2) per-location invariants, and (3) ownership transfer via release-acquire synchronisation—as well as novel features for reasoning about (4) the absence of out-of-thin-air behaviours and (5) coherence. The logic is proved sound over the recent “promising” memory model of Kang et al., using a substantially different argument to soundness proofs of logics for simpler memory models.The research was supported in part by the Danish Council for Independent Research (project DFF – 4181-00273), by a European Research Council Consolidator Grant for the project “RustBelt” (grant agreement no. 683289), and by Len Blavatnik and the Blavatnik Family foundation

    Reconciling Event Structures with Modern Multiprocessors (Artifact)

    Get PDF
    The artifact is a virtual machine image containing two Coq packages which include mechanization of proofs stated in the paper. The first package imm contains a modified version of the Intermediate Memory Model, extended with the support of sequentially consistent atomics, and the compilation correctness proofs from it to hardware models. The second package weakestmoToImm contains a definition of the Weakestmo memory model as well as a compilation correctness proof from it to IMM

    The Decidability of Verification under Promising 2.0

    Get PDF
    In PLDI'20, Lee et al. introduced the \emph{promising } semantics PS 2.0 of the C++ concurrency that captures most of the common program transformations while satisfying the DRF guarantee. The reachability problem for finite-state programs under PS 2.0 with only release-acquire accesses is already known to be undecidable. Therefore, we address, in this paper, the reachability problem for programs running under PS 2.0 with relaxed accesses together with promises. We show that this problem is undecidable even in the case where the input program has finite state. Given this undecidability result, we consider the fragment of PS 2.0 with only relaxed accesses allowing bounded number of promises. We show that under this restriction, the reachability is decidable, albeit very expensive: it is non-primitive recursive. Given this high complexity with bounded number of promises and the undecidability result for the RA fragment of PS 2.0, we consider a bounded version of the reachability problem. To this end, we bound both the number of promises and the "view-switches", i.e, the number of times the processes may switch their local views of the global memory. We provide a code-to-code translation from an input program under PS 2.0, with relaxed and release-acquire memory accesses along with promises, to a program under SC. This leads to a reduction of the bounded reachability problem under PS 2.0 to the bounded context-switching problem under SC. We have implemented a prototype tool and tested it on a set of benchmarks, demonstrating that many bugs in programs can be found using a small bound

    Strong Logic for Weak Memory: Reasoning About Release-Acquire Consistency in Iris (Artifact)

    Get PDF
    This artifact provides the soundness proofs for the encodings in Iris the RSL and GPS logics, as well as the verification for all standard examples known to be verifiable in those logics. All of these proofs are formalized in Coq, which is the main content of this artifact. The formalization is provided in a virtual machine for the convenience of testing, but can also be built from source

    Expressive modular fine-grained concurrency specification

    Full text link

    Proving Correctness of Highly-Concurrent Linearisable Objects

    Get PDF
    International audienceWe study a family of implementations for linked lists using fine-grain synchronisation. This approach enables greater concurrency, but correctness is a greater challenge than for classical, coarse-grain synchronisation. Our examples are demonstrative of common design patterns such as lock coupling, optimistic, and lazy synchronisation. Although they are are highly concurrent, we prove that they are linearisable, safe, and they correctly implement a high-level abstraction. Our proofs illustrate the power and applicability of rely-guarantee reasoning, as well of some of its limitations. The examples of the paper establish a benchmark challenge for other reasoning techniques
    corecore